FE DE ERRATAS

Página	Dice	Debe decir
37	Ejercicio 2.3 Respuesta: P _{total suminstrada} = - 75.5 W	Ejercicio 2.3 Respuesta: $P_{total\ absorbida} = 75.5\ W$
	Ejercicio 2.4 Calcule la potencia de la fuente	$P_{total \ suminstrada} = -75.5 \ W.$ Ejercicio 2.4 Calcule la potencia de la fuente V_2
20	V_2 .	cuando la de V ₁ es de – 960 W.
38	Ejercicio 2.5 P _{total suminstrada} = 425 W	Ejercicio 2.5 P _{total suminstrada} = -925 W
39	Figura del ejercicio 2.7 $V_3 = 30 i_X$	Figura del ejercicio 2.7 $V_3 = \frac{20}{3}i_X$
	Figura del ejercicio 2.8 $V_3 = \frac{12}{7}i_X$	Figura del ejercicio 2.8 $V_3 = \frac{8}{7}i_X$
40	Figura del ejercicio 2.10 $I = \beta i_b$	Figura del ejercicio 2.10 $I = 5i_b$
50	Figura 3.11 R_1 y R_4 no tienen valor	Figura 3.11 $ m R_1 = 4~\Omega~y~R_4 = 2~\Omega$
51	Figura 3.12 $R_7=27~\Omega,~R_8=36~\Omega$ y $V_2=900~V$	Figura 3.12 $R_7 = 9 \Omega$, $R_8 = 9 \Omega$ y $V_2 = 360 \text{ V}$
55	se calculan las potencias individuales $P_{R_1} = (36A)^2(5\Omega) = 180 \text{ W}$ $P_{R_2} = (4A)^2(10\Omega) = 40 \text{ W}$ $P_{R_3} = (25A)^2(2\Omega) = 50 \text{ W}$ $P_{R_4} = (1A)^2(20\Omega) = 20 \text{ W}$	se calculan las potencias individuales $P_{R_1} = (6A)^2(5\Omega) = 180 \text{ W}$ $P_{R_2} = (2A)^2(10\Omega) = 40 \text{ W}$ $P_{R_3} = (5A)^2(2\Omega) = 50 \text{ W}$ $P_{R_4} = (-1A)^2(20\Omega) = 20 \text{ W}$
68	Ejercicio 3.3 Respuesta: 208 W	Ejercicio 3.3 Respuesta: — 208 W
69	Ejercicio 3.6 Respuesta: 1120 W	Ejercicio 3.6 Respuesta: $-1120~\mathrm{W}$
93	Figura 4.35 $I_1 = 12A$	Figura 4.35 $I_1 = 10A$
114	Ejercicio 4.2. Determinar la potencia de la fuente de corriente ${\rm I}_2$.	Ejercicio 4.2. Analizando el circuito por el principio de superposición, determinar la potencia de la fuente de corriente $\rm I_2$.
115	Figura del ejercicio 4.4 $\rm\ I_1=10A$	Figura del ejercicio 4.4 $I_1 = 5A$
122	Ecuación 5.7 $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	Ecuación 5.7 $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$

FE DE ERRATAS

Página	Dice	Debe decir
132	Ecuación 5.25 $i_1(R_1 + R_3) - i_2R_3 = 0$	Ecuación 5.25 $i_1(R_1 + R_3) - i_2R_3 = -V$
	Ecuación 5.27 $-i_2R_4 + i_3(R_4 + R_{eq}) = 0$	Ecuación 5.27 $-i_2R_4 + i_3(R_4 + R_{eq}) = V$
136	Ecuaciones $v_x = R_2 i_C(t) = 12 \text{ k}\Omega(-2.7e^{-2t} \text{ mA})$	Ecuaciones $v_{\rm x}=-R_2 i_{\rm C}(t)=-(12~{\rm k}\Omega)(-2.7e^{-2t}~{\rm mA})$
	$= -32.4e^{-2t} \text{ V}$	$= 32.4e^{-2t} \text{ V}$
	$V_2 = 2v_x = -64.8e^{-2t} V$	$V_2 = 2v_x = 64.8e^{-2t} V$
145	Sustituyendo la constante de integración en la ecuación 5.51 el voltaje en el capacitor	Sustituyendo la constante de integración en la ecuación 5.52 el voltaje en el capacitor
154	Ecuación $R_{Th} = \frac{V_T}{I_T} = \frac{R_{eq_1}}{1 + \frac{R_{eq_1} + 2000 \ k\Omega}{R_4}} =$	Ecuación $R_{Th} = \frac{V_T}{I_T} = \frac{R_{eq_1}}{1 + \frac{R_{eq_1} + 2000 \Omega}{R_4}} =$
	$\frac{10 \text{ k}\Omega \cdot 3 \text{ k}\Omega}{15 \text{ k}\Omega} = 2 \text{ k}\Omega$	$\frac{10 \text{ k}\Omega \cdot 3 \text{ k}\Omega}{15 \text{ k}\Omega} = 2 \text{ k}\Omega$
156	Figura 5.45 a) $L_1=2mH$, $L_2=2mH$	Figura 5.45 a) $L_1 = 2H$, $L_2 = 2H$
166	Figura del ejercicio 5.2 $V_2=4i_X$	Figura del ejercicio 5.2 $V_2 = 4000 i_X$
167	Figura del ejercicio 5.3 polaridad de $\mathrm{C_1} \pm$	Figura del ejercicio 5.3 polaridad de C_1 \mp
	Ejercicio 5.3 Respuesta: $\omega_{\mathrm{R}_3} = -39.68\mu\mathrm{J}$	Ejercicio 5.3 Respuesta: $\omega_{R_3} = 39.68 \ mJ$
	Ejercicio 5.4 Respuesta :	Ejercicio 5.4 Respuesta :
	$P_{R_4}(t) = 150 \cdot (5 + e^{-100t})^2 \mu W$	$P_{R_4}(t) = 270 \cdot (5 + e^{-100t})^2 \mu W$
170	Ejercicio 5.9 Respuesta:	Ejercicio 5.9 Respuesta:
	$V_{R_2}(t) = (30 - 20e^{-5t}) V$	$P_{V_1}(t) = (-8 + 156e^{-3t} + 252e^{-6t}) W$
181	Ecuación $\frac{dv(t)}{dt} = 5[\delta(t-2) - \delta(t-5)] \frac{V}{s} $ (6.9)	Ecuación $\frac{dv(t)}{dt} = 5[\delta(t-2) - \delta(t-5)] \frac{V}{s}$

FE DE ERRATAS

Página	Dice	Debe decir
183	Ejemplo 6.4 R = 5 KΩ, C= 0.2μ F	Ejemplo 6.4 R = $100 \text{ K}\Omega$, C= $0.01 \mu\text{F}$
203	Ejercicio 6.2 Respuesta: $V_0 = 12 \text{ V}$	Ejercicio 6.2 Respuesta: $V_0 = -12 \text{ V}$
206	Figura del ejercicio 6.7 la terminal del resistor $\bf R$ está conectada en la terminal inversora de $\bf A_1$.	Figura del ejercicio 6.7 la terminal del resistor R debe estar conectada en la terminal positiva de la fuente de voltaje V.
	Figura del ejercicio 6.8 $V_1=4~{ m V}$	Figura del ejercicio 6.8 $V_1 = 5 V$
	Ejercicio 6.9 Determinar la integral de la señal que se muestra	Ejercicio 6.9 Determinar la salida de un circuito integrador cuya señal de entrada se muestra
207	Ejercicio 6.10 Determinar la derivada de	Ejercicio 6.10 Determinar la salida de un circuito derivador cuya constante de tiempo es de 1 ms y la señal de entrada es la obtenida en el ejercicio 6.9.